KNAW Repository

Modeling the nitrogen fluxes in the Black Sea using a 3D coupled hydrodynamical-biogeochemical model: transport versus biogeochemical processes, exchanges across the shelf break and comparison of the shelf and deep sea ecodynamics

Grégoire, M. and Beckers, J.-M. (2004) Modeling the nitrogen fluxes in the Black Sea using a 3D coupled hydrodynamical-biogeochemical model: transport versus biogeochemical processes, exchanges across the shelf break and comparison of the shelf and deep sea ecodynamics. Biogeosciences, 1, 33-61. ISSN 1726-4170.

[img]PDF - Published Version
Restricted to KNAW only

3116Kb

Official URL: www.biogeosciences.net/1/33/2004/

Abstract

A 6-compartment biogeochemical model of nitrogen cycling and plankton productivity has been coupled with a 3D general circulation model in an enclosed environment (the Black Sea) so as to quantify and compare, on a seasonal and annual scale, the typical internal biogeochemical functioning of the shelf and of the deep sea as well as to estimate the nitrogen and water exchanges at the shelf break. Model results indicate that the annual nitrogen net export to the deep sea roughly corresponds to the annual load of nitrogen discharged by the rivers on the shelf. The model estimated vertically integrated gross annual primary production is 130gCm-2yr-1 for the whole basin, 220gCm-2yr-1 for the shelf and 40gCm-2yr-1 for the central basin. In agreement with sediment trap observations, model results indicate a rapid and efficient recycling of particulate organic matter in the sub-oxic portion of the water column (60-80m) of the open sea. More than 95% of the PON produced in the euphotic layer is recycled in the upper 100m of the water column, 87% in the uppe

Item Type:Article
ID Code:11522
Deposited On:23 Nov 2011 01:00
Last Modified:24 Apr 2012 16:33

Repository Staff Only: item control page