KNAW Repository

The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model

Jost, C. and Lawrence, C.A. and Campolongo, F. and Bund Van de, W. and Hill, S. and DeAngelis, D. L. (2004) The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model. Theoretical Population Biology, 66, 37-51. ISSN 0040-5809.

[img]PDF - Published Version
Restricted to KNAW only

362Kb

Official URL: http://dx.doi.org/10.1016/j.tpb.2004.02.001

Abstract

Recognition of the microbial loop as an important part of aquatic ecosystems disrupted the notion of simple linear food chains. However, current research suggests that even the microbial loop paradigm is a gross simplification of microbial interactions due to the presence of mixotrophs—organisms that both photosynthesize and graze. We present a simple food web model with four trophic species, three of them arranged in a food chain (nutrients–autotrophs–herbivores) and the fourth as a mixotroph with links to both the nutrients and the autotrophs. This model is used to study the general implications of inclusion of the mixotrophic link in microbial food webs and the specific predictions for a parameterization that describes open ocean mixed layer plankton dynamics. The analysis indicates that the system parameters reside in a region of the parameter space where the dynamics converge to a stable equilibrium rather than displaying periodic or chaotic solutions. However, convergence requires weeks to months, suggesting that the system would never reach equilibrium in the ocean due to alteration of the physical forcing regime. Most importantly, the mixotrophic grazing link seems to stabilize the system in this region of the parameter space, particularly when nutrient recycling feedback loops are included. [KEYWORDS: Mixotrophy ; Marine food webs Intraguild predation Nutrient recycling Food webs]

Item Type:Article
ID Code:11537
Deposited On:23 Nov 2011 01:00
Last Modified:24 Apr 2012 16:33

Repository Staff Only: item control page