KNAW Repository

Community analysis of methanogenic archaea within a riparian flooding gradient

Kemnitz, D. and Chin, K-J. and Bodelier, P.L.E. and Conrad, R. (2004) Community analysis of methanogenic archaea within a riparian flooding gradient. Environmental Microbiology, 6, 449-461. ISSN 1462-2912.

[img]PDF - Published Version
Restricted to KNAW only

660Kb

Official URL: http://dx.doi.org/10.1111/j.1462-2920.2004.00573.x

Abstract

Anoxic soils in river floodplains (or riparian soils) are a source of methane emission. However, little is known about the ecology and community structure of archaeal methanogenic microbes, which are a crucial component of methane flux in those habitats. We studied the archaeal community in the vertical profile of four different sites along the River Waal in the Netherlands. These sites differ in their annual flooding regime ranging from never or seldom to permanently flooded. The archaeal community structure has been characterized by terminal restriction fragment length polymorphism (T-RFLP) and comparative sequence analysis of the archaeal SSU rRNA gene and the mcrA gene. The latter gene codes for the -subunit of methyl-coenzyme M reductase. Additionally, the potential methanogenic activity was determined by incubation of soil slurries under anoxic conditions. The community composition differed only slightly with the depth of the soil (0-20 cm). However, the diversity of archaeal SSU rRNA genes increased with the frequency of flooding. Terminal restriction fragment length polymorphism analysis of mcrA gene amplicons confirmed the results concerning methanogenic archaea. In the never and rarely flooded soils, crenarchaeotal sequences were the dominant group. In the frequently and permanently flooded soils, Methanomicrobiaceae, Methanobacteriaceae, Methanosarcinaceae and the uncultured Rice Clusters IV and VI (Crenarchaeota) were detectable independently from duration of anoxic conditions. Methanosaetaceae, on the other hand, were only found in the permanently and frequently flooded soils under conditions where concentrations of acetate were < 30 µM. The results indicate that methanogens as well as other archaea occupy characteristic niches according to the flooding conditions in the field. Methanosaetaceae, in particular, seem to be adapted (or proliferate at) to low acetate concentrations

Item Type:Article
Institutes:Nederlands Instituut voor Ecologie (NIOO)
ID Code:11539
Deposited On:23 Nov 2011 01:00
Last Modified:31 Mar 2014 10:25

Repository Staff Only: item control page