KNAW Repository

Finding the needles in the metagenome haystack

Kowalchuk, G.A. and Speksnijder, A.G.C.L. and Zhang, K. and Goodman, R.M. and Van Veen, J.A. (2007) Finding the needles in the metagenome haystack. Microbial Ecology, 53, 475-485. ISSN 0095-3628.

[img]PDF - Published Version
Restricted to KNAW only

241Kb

Official URL: http://dx.doi.org/10.1007/s00248-006-9201-2

Abstract

In the collective genomes (the metagenome) of the microorganisms inhabiting the Earth’s diverse environments is written the history of life on this planet. New molecular tools developed and used for the past 15 years by microbial ecologists are facilitating the extraction, cloning, screening, and sequencing of these genomes. This approach allows microbial ecologists to access and study the full range of microbial diversity, regardless of our ability to culture organisms, and provides an unprecedented access to the breadth of natural products that these genomes encode. However, there is no way that the mere collection of sequences, no matter how expansive, can provide full coverage of the complex world of microbial metagenomes within the foreseeable future. Furthermore, although it is possible to fish out highly informative and useful genes from the sea of gene diversity in the environment, this can be a highly tedious and inefficient procedure. Microbial ecologists must be clever in their pursuit of ecologically relevant, valuable, and niche-defining genomic information within the vast haystack of microbial diversity. In this report, we seek to describe advances and prospects that will help microbial ecologists glean more knowledge from investigations into metagenomes. These include technological advances in sequencing and cloning methodologies, as well as improvements in annotation and comparative sequence analysis. More significant, however, will be ways to focus in on various subsets of the metagenome that may be of particular relevance, either by limiting the target community under study or improving the focus or speed of screening procedures. Lastly, given the cost and infrastructure necessary for large metagenome projects, and the almost inexhaustible amount of data they can produce, trends toward broader use of metagenome data across the research community coupled with the needed investment in bioinformatics infrastructure devoted to metagenomics will no doubt further increase the value of metagenomic studies in various environments.

Item Type:Article
Institutes:Nederlands Instituut voor Ecologie (NIOO)
ID Code:4521
Deposited On:15 Sep 2009 02:00
Last Modified:24 Apr 2012 16:48

Repository Staff Only: item control page