KNAW Repository

Phosphorylation dynamics during early differentiation of human embryonic stem cells

Hoof van, D. and Munoz, J. and Braam, S.R. and Pinkse, M.W.H. and Linding, R. and Heck, A.J.R. and Mummery, C.L. and Krijgsveld, J. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell, 5, 214-26. ISSN 1934-5909.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1016/j.stem.2009.05.021

Abstract

Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during differentiation induced by bone morphogenetic protein (BMP) and removal of hESC growth factors. Of 5222 proteins identified, 1399 were phosphorylated on 3067 residues. Approximately 50% of these phosphosites were regulated within 1 hr of differentiation induction, revealing a complex interplay of phosphorylation networks spanning different signaling pathways and kinase activities. Among the phosphorylated proteins was the pluripotency-associated protein SOX2, which was SUMOylated as a result of phosphorylation. Using the data to predict kinase-substrate relationships, we reconstructed the hESC kinome; CDK1/2 emerged as central in controlling self-renewal and lineage specification. The findings provide new insights into how hESCs exit the pluripotent state and present the hESC (phospho)proteome resource as a complement to existing pluripotency network databases.

Item Type:Article
Institutes:Hubrecht Instituut
ID Code:6998
Deposited On:25 Jan 2010 01:00
Last Modified:13 Oct 2010 12:51

Repository Staff Only: item control page