KNAW Repository

Ongoing transients in carbonate compensation

Boudreau, B.P. and Middelburg, J.J. and Hofmann, A.F. and Meysman, F.J.R. (2010) Ongoing transients in carbonate compensation. Global Biogeochemical Cycles, 24, 13-p.. ISSN 0886-6236.

[img]
Preview
PDF - Published Version
1045Kb

Official URL: http://dx.doi.org/10.1029/2009GB003654

Abstract

Uptake of anthropogenic CO2 is acidifying the oceans. Over the next 2000 years, this will modify the dissolution and preservation of sedimentary carbonate. By coupling new formulas for the positions of the calcite saturation horizon, zsat, the compensation depth, zcc, and the snowline, zsnow, to a biogeochemical model of the oceanic carbonate system, we evaluate how these horizons will change with ongoing ocean acidification. Our model is an extended Havardton-Bear-type box model, which includes novel kinetic descriptions for carbonate dissolution above, between, and below these critical depths. In the preindustrial ocean, zsat and zcc are at 3939 and 4750 m, respectively. When forced with the IS92a CO2 emission scenario, the model forecasts (1) that zsat will rise rapidly (“runaway” conditions) so that all deep water becomes undersaturated, (2) that zcc will also rise and over 1000 years will pass before it will be stabilized by the dissolution of previously deposited CaCO3, and (3) that zsnow will respond slowly to acidification, rising by ∼1150 m during a 2000 year timeframe. A further simplified model that equates the compensation and saturation depths produces quantitatively different results. Finally, additional feedbacks due to acidification on calcification and increased atmospheric CO2 on organic matter productivity strongly affect the positions of the compensation horizons and their dynamics.

Item Type:Article
Institutes:Nederlands Instituut voor Ecologie (NIOO)
ID Code:9062
Deposited On:04 Jan 2011 01:00
Last Modified:18 Oct 2011 16:09

Repository Staff Only: item control page